MyoD protein is differentially accumulated in fast and slow skeletal muscle fibres and required for normal fibre type balance in rodents
نویسندگان
چکیده
MyoD is a muscle-specific transcription factor involved in commitment of cells to myogenesis. MyoD mRNA levels differ between fast and slow muscles, suggesting that MyoD may regulate aspects of fibre type. Here we show that detectable MyoD protein becomes restricted during development to the nuclei of the fastest classes of fibres in fast muscles. myoDm1 mice, in which the myoD gene has been disrupted, show subtle shifts in fibre type of fast muscles toward a slower character, suggesting that MyoD is involved in the maintenance of the fast IIB/IIX fibre type. In contrast, slow muscle shifts to a faster phenotype in myoDm1. Moreover, MD6.0-lacZ transgenic mice with the myoD promoter driving lacZ, show highest beta-galactosidase activity in the fastest fibres of fast muscles, but also express low levels in slow fibres of slow, but not fast, muscles, suggesting distinct regulation of gene expression in slow fibres of fast and slow muscles.
منابع مشابه
Effect of progressive resistance exercise on β1 integrin and vinculin protein levels in slow-and fast-twitch skeletal muscles of male rats
Introduction: Skeletal muscle is a flexible and ever changing tissue and the role of costameric proteins in its response to different stimuli is not well defined. The aim of this study was to investigate the effect of progressive resistance exercise on β1 integrin and vinculin proteins in fast and slow twitch skeletal muscles of male rats. Methods: Twelve male Wistar rats (weight: 298±5.2 gr...
متن کاملPolymorphism of myofibrillar proteins of rabbit skeletal-muscle fibres. An electrophoretic study of single fibres.
Rabbit predominantly fast-twitch-fibre and predominantly slow-twitch-fibre skeletal muscles of the hind limbs, the psoas, the diaphragm and the masseter muscles were fibre-typed by one-dimensional polyacrylamide-gel electrophoresis of the myofibrillar proteins of chemically skinned single fibres. Investigation of the distribution of fast-twitch-fibre and slow-twitch-fibre isoforms of myosin lig...
متن کاملFgf8 drives myogenic progression of a novel lateral fast muscle fibre population in zebrafish.
Fibroblast growth factors (Fgfs) have long been implicated in regulating vertebrate skeletal muscle differentiation, but their precise role(s) in vivo remain unclear. Here, we show that Fgf8 signalling in the somite is required for myod expression and terminal differentiation of a subset of fast muscle cells in the zebrafish lateral somite. In the absence of Fgf8, lateral somite cells transient...
متن کاملValidation of a simple, rapid, and economical technique for distinguishing type 1 and 2 fibres in fixed and frozen skeletal muscle.
AIMS To produce a method of distinguishing between type 1 and 2 skeletal muscle fibres that would be more economical and reproducible than the standard ATPase method and be applicable to both fixed and frozen tissue. Because the ATPase method has been accepted as the basis for fibre identification for the past 50 years, the new method should not give significantly different results. METHODS I...
متن کاملDihydrotestosterone treatment rescues the decline in protein synthesis as a result of sarcopenia in isolated mouse skeletal muscle fibres
BACKGROUND Sarcopenia, the progressive decline in skeletal muscle mass and function with age, is a debilitating condition. It leads to inactivity, falls, and loss of independence. Despite this, its cause(s) and the underlying mechanism(s) are still poorly understood. METHODS In this study, small skeletal muscle fibre bundles isolated from the extensor digitorum longus (a fast-twitch muscle) a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 61 شماره
صفحات -
تاریخ انتشار 1997